bs-5531R-Cy3 [Conjugated Primary Antibody]
PKMYT1(Thr495) Polyclonal Antibody, Cy3 Conjugated
www.biossusa.com
[email protected]
800.501.7654 [DOMESTIC]
+1.781.569.5821 [INTERNATIONAL]
DATASHEET

Host: Rabbit

Target Protein: PKMYT1 Thr495

Modification Site: Thr495

Clonality: Polyclonal

Isotype: IgG

Entrez Gene: 2475

Source: KLH conjugated synthetic phosphopeptide derived from human PKMYT1 around the phosphorylation site of Thr495

Purification: Purified by Protein A.

Storage Buffer: Aqueous buffered solution containing 0.01M TBS (pH 7.4) with 1% BSA, 0.02% Proclin300 and 50% Glycerol.

Storage: Store at -20°C. Aliquot into multiple vials to avoid repeated freeze-thaw cycles.

Background:

Serine/threonine protein kinase which is a central regulator of cellular metabolism, growth and survival in response to hormones, growth factors, nutrients, energy and stress signals. MTOR directly or indirectly regulates the phosphorylation of at least 800 proteins. Functions as part of 2 structurally and functionally distinct signaling complexes mTORC1 and mTORC2 (mTOR complex 1 and 2). Activated mTORC1 up-regulates protein synthesis by phosphorylating key regulators of mRNA translation and ribosome synthesis. This includes phosphorylation of EIF4EBP1 and release of its inhibition toward the elongation initiation factor 4E (eiF4E). Moreover, phosphorylates and activates RPS6KB1 and RPS6KB2 that promote protein synthesis by modulating the activity of their downstream targets including ribosomal protein S6, eukaryotic translation initiation factor EIF4B, and the inhibitor of translation initiation PDCD4. Stimulates the pyrimidine biosynthesis pathway, both by acute regulation through RPS6KB1-mediated phosphorylation of the biosynthetic enzyme CAD, and delayed regulation, through transcriptional enhancement of the pentose phosphate pathway which produces 5-phosphoribosyl-1-pyrophosphate (PRPP), an allosteric activator of CAD at a later step in synthesis, this function is dependent on the mTORC1 complex. Regulates ribosome synthesis by activating RNA polymerase III-dependent transcription through phosphorylation and inhibition of MAF1 an RNA polymerase III-repressor. In parallel to protein synthesis, also regulates lipid synthesis through SREBF1/SREBP1 and LPIN1. To maintain energy homeostasis mTORC1 may also regulate mitochondrial biogenesis through regulation of PPARGC1A. mTORC1 also negatively regulates autophagy through phosphorylation of ULK1. Under nutrient sufficiency, phosphorylates ULK1 at 'Ser-758', disrupting the interaction with AMPK and preventing activation of ULK1.

Conjugation: Cy3

Excitation/ Emission: 512,550nm/570,615nm

Size: 100ul

Concentration: 1ug/ul

Applications: WB(1:300-5000)

Predicted Molecular Weight: 55


Cross Reactive Species: Human
Mouse

For research use only. Not intended for diagnostic or therapeutic use.

PRODUCT SPECIFIC PUBLICATIONS
  • Xu,et al.Adipocytes affect castration-resistant prostate cancer cells to develop the resistance to cytotoxic action of NK cells with alterations of PD-L1/NKG2D ligand levels in tumor cells.(2018) The Prostate. 78:353-364.Read more>>
  • Xu,et al.Ablation of PPARγ in subcutaneous fat exacerbates age-associated obesity and metabolic decline.(2018) Aging Cell. 17:.Read more>>
VALIDATION IMAGES